ODE No. 912

\[ y'(x)=\frac {2 a x}{-128 a^4+96 a^3 x y(x)^2+32 a^3 x-24 a^2 x^2 y(x)^4-16 a^2 x^2 y(x)^2+2 a x^3 y(x)^6+2 a x^3 y(x)^4+2 a x^3-x^3 y(x)} \] Mathematica : cpu = 1.07978 (sec), leaf count = 201

DSolve[Derivative[1][y][x] == (2*a*x)/(-128*a^4 + 32*a^3*x + 2*a*x^3 - x^3*y[x] + 96*a^3*x*y[x]^2 - 16*a^2*x^2*y[x]^2 - 24*a^2*x^2*y[x]^4 + 2*a*x^3*y[x]^4 + 2*a*x^3*y[x]^6),y[x],x]
 

\[\text {Solve}\left [-\text {RootSum}\left [-\text {$\#$1}^3 y(x)^6-\text {$\#$1}^3 y(x)^4-\text {$\#$1}^3+12 \text {$\#$1}^2 a y(x)^4+8 \text {$\#$1}^2 a y(x)^2-48 \text {$\#$1} a^2 y(x)^2-16 \text {$\#$1} a^2+64 a^3\& ,\frac {\text {$\#$1} \log (x-\text {$\#$1})}{3 \text {$\#$1}^2 y(x)^6+3 \text {$\#$1}^2 y(x)^4+3 \text {$\#$1}^2-24 \text {$\#$1} a y(x)^4-16 \text {$\#$1} a y(x)^2+48 a^2 y(x)^2+16 a^2}\& \right ]-\frac {\text {RootSum}\left [\text {$\#$1}^3+\text {$\#$1}^2+1\& ,\frac {\log \left (y(x)^2-\text {$\#$1}\right )}{3 \text {$\#$1}^2+2 \text {$\#$1}}\& \right ]}{4 a}+y(x)=c_1,y(x)\right ]\] Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(y(x),x) = 2*a*x/(-x^3*y(x)+2*a*x^3+2*a*y(x)^4*x^3-16*y(x)^2*a^2*x^2+32*a^3*x+2*a*y(x)^6*x^3-24*y(x)^4*a^2*x^2+96*y(x)^2*x*a^3-128*a^4),y(x))
 

, could not solve

dsolve(diff(y(x),x) = 2*a*x/(-x^3*y(x)+2*a*x^3+2*a*y(x)^4*x^3-16*y(x)^2*a^2*x^2+32*a^3*x+2*a*y(x)^6*x^3-24*y(x)^4*a^2*x^2+96*y(x)^2*x*a^3-128*a^4),y(x))