ODE No. 930

\[ y'(x)=\frac {e^{\frac {y(x)}{x}} \left (x^4+x^2 e^{-\frac {y(x)}{x}}+x e^{-\frac {y(x)}{x}}+x e^{-\frac {y(x)}{x}} y(x)+e^{-\frac {y(x)}{x}} y(x)\right )}{x (x+1)} \] Mathematica : cpu = 1.22919 (sec), leaf count = 39

DSolve[Derivative[1][y][x] == (E^(y[x]/x)*(x/E^(y[x]/x) + x^2/E^(y[x]/x) + x^4 + y[x]/E^(y[x]/x) + (x*y[x])/E^(y[x]/x)))/(x*(1 + x)),y[x],x]
 

\[\left \{\left \{y(x)\to -x \log \left (\frac {-\frac {x^3}{3}+\frac {x^2}{2}-x+\log (x+1)-c_1}{x}\right )\right \}\right \}\] Maple : cpu = 0.408 (sec), leaf count = 36

dsolve(diff(y(x),x) = (exp(-y(x)/x)*y(x)*x+exp(-y(x)/x)*y(x)+exp(-y(x)/x)*x^2+exp(-y(x)/x)*x+x^4)*exp(y(x)/x)/x/(1+x),y(x))
 

\[y \left (x \right ) = -\ln \left (\frac {-2 x^{3}+3 x^{2}+6 \ln \left (1+x \right )-6 c_{1}-6 x}{6 x}\right ) x\]