ODE No. 960

\[ y'(x)=\frac {\csc \left (\frac {y(x)}{2 x}\right ) \sec \left (\frac {y(x)}{2 x}\right ) \sec \left (\frac {y(x)}{x}\right ) \left (x^2 \sin \left (\frac {y(x)}{2 x}\right ) \sin \left (\frac {y(x)}{x}\right ) \cos \left (\frac {y(x)}{2 x}\right )-\frac {1}{2} y(x) \sin \left (\frac {y(x)}{x}\right )+\frac {1}{2} y(x) \sin \left (\frac {y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} y(x) \sin \left (\frac {3 y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )\right )}{x} \] Mathematica : cpu = 0.170872 (sec), leaf count = 14

DSolve[Derivative[1][y][x] == (Csc[y[x]/(2*x)]*Sec[y[x]/(2*x)]*Sec[y[x]/x]*(x^2*Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*Sin[y[x]/x] + (Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*y[x])/2 - (Sin[y[x]/x]*y[x])/2 + (Cos[y[x]/(2*x)]*Sin[(3*y[x])/(2*x)]*y[x])/2))/x,y[x],x]
 

\[\left \{\left \{y(x)\to x \sin ^{-1}\left (e^{x+c_1}\right )\right \}\right \}\] Maple : cpu = 0.057 (sec), leaf count = 11

dsolve(diff(y(x),x) = 1/2*(-y(x)*sin(y(x)/x)+y(x)*sin(3/2*y(x)/x)*cos(1/2*y(x)/x)+y(x)*cos(1/2*y(x)/x)*sin(1/2*y(x)/x)+2*sin(y(x)/x)*x^2*sin(1/2*y(x)/x)*cos(1/2*y(x)/x))/cos(y(x)/x)/cos(1/2*y(x)/x)/sin(1/2*y(x)/x)/x,y(x))
 

\[y \left (x \right ) = \arcsin \left ({\mathrm e}^{x} c_{1}\right ) x\]