ODE No. 976

\[ y'(x)=\frac {y(x) \left (x^7 y(x)^2+x^4 y(x)+x-3\right )}{x} \] Mathematica : cpu = 0.180744 (sec), leaf count = 101

DSolve[Derivative[1][y][x] == (y[x]*(-3 + x + x^4*y[x] + x^7*y[x]^2))/x,y[x],x]
 

\[\text {Solve}\left [-\frac {7}{3} \text {RootSum}\left [-7 \text {$\#$1}^3+6 \sqrt [3]{-7} \text {$\#$1}-7\& ,\frac {\log \left (\frac {3 x^6 y(x)+x^3}{\sqrt [3]{7} \sqrt [3]{-x^9}}-\text {$\#$1}\right )}{2 \sqrt [3]{-7}-7 \text {$\#$1}^2}\& \right ]=\frac {7^{2/3} \left (-x^9\right )^{2/3}}{9 x^5}+c_1,y(x)\right ]\] Maple : cpu = 0.247 (sec), leaf count = 57

dsolve(diff(y(x),x) = y(x)/x*(y(x)^2*x^7+y(x)*x^4+x-3),y(x))
 

\[y \left (x \right ) = \frac {\sqrt {3}\, \tan \left (\RootOf \left (-\sqrt {3}\, \ln \left (\frac {\frac {9 \left (\tan ^{2}\left (\textit {\_Z} \right )\right )}{7}+\frac {9}{7}}{\left (-3 \tan \left (\textit {\_Z} \right )+\sqrt {3}\right )^{2}}\right )+3 \sqrt {3}\, c_{1}-2 \sqrt {3}\, x -2 \textit {\_Z} \right )\right )-1}{2 x^{3}}\]