ODE No. 98

\[ a y(x)^2+c x^{2 b}-b y(x)+x y'(x)=0 \] Mathematica : cpu = 0.189744 (sec), leaf count = 442

DSolve[c*x^(2*b) - b*y[x] + a*y[x]^2 + x*Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to -\frac {\sqrt {-a} \sqrt {-c} x^b \left (-\frac {2 \sqrt {\frac {2}{\pi }} \cos \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{\sqrt {\frac {\sqrt {-a} \sqrt {-c} x^b}{b}}}+\frac {\sqrt {\frac {2}{\pi }} c_1 \sin \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{\sqrt {\frac {\sqrt {-a} \sqrt {-c} x^b}{b}}}-\frac {\sqrt {\frac {2}{\pi }} c_1 \left (-\sin \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )-\frac {\sqrt {-a} b \sqrt {-c} x^{-b} \cos \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{a c}\right )}{\sqrt {\frac {\sqrt {-a} \sqrt {-c} x^b}{b}}}\right )-\frac {\sqrt {\frac {2}{\pi }} b c_1 \cos \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{\sqrt {\frac {\sqrt {-a} \sqrt {-c} x^b}{b}}}}{2 a \left (\frac {\sqrt {\frac {2}{\pi }} \sin \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{\sqrt {\frac {\sqrt {-a} \sqrt {-c} x^b}{b}}}+\frac {\sqrt {\frac {2}{\pi }} c_1 \cos \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{\sqrt {\frac {\sqrt {-a} \sqrt {-c} x^b}{b}}}\right )}\right \}\right \}\] Maple : cpu = 0.062 (sec), leaf count = 38

dsolve(x*diff(y(x),x)+a*y(x)^2-b*y(x)+c*x^(2*b) = 0,y(x))
 

\[y \left (x \right ) = -\frac {\tan \left (\frac {x^{b} \sqrt {a}\, \sqrt {c}+c_{1} b}{b}\right ) \sqrt {c}\, x^{b}}{\sqrt {a}}\]