ODE No. 994

\[ y'(x)=\frac {y(x)}{x \log (x)}-x^3 \left (-y(x)^2-2 y(x) \log (x)-\log ^2(x)\right ) \] Mathematica : cpu = 0.208772 (sec), leaf count = 198

DSolve[Derivative[1][y][x] == y[x]/(x*Log[x]) - x^3*(-Log[x]^2 - 2*Log[x]*y[x] - y[x]^2),y[x],x]
 

\[\left \{\left \{y(x)\to -\frac {\frac {1}{16} x^4 e^{\frac {1}{16} x^4 (4 \log (x)-1)} (4 \log (x)-1) \left (\frac {x^3}{4}+\frac {1}{4} x^3 (4 \log (x)-1)\right )+\frac {1}{4} x^3 e^{\frac {1}{16} x^4 (4 \log (x)-1)}+\frac {1}{4} x^3 e^{\frac {1}{16} x^4 (4 \log (x)-1)} (4 \log (x)-1)+c_1 e^{\frac {1}{16} x^4 (4 \log (x)-1)} \left (\frac {x^3}{4}+\frac {1}{4} x^3 (4 \log (x)-1)\right )}{x^3 \left (\frac {1}{16} x^4 e^{\frac {1}{16} x^4 (4 \log (x)-1)} (4 \log (x)-1)+c_1 e^{\frac {1}{16} x^4 (4 \log (x)-1)}\right )}\right \}\right \}\] Maple : cpu = 0.032 (sec), leaf count = 43

dsolve(diff(y(x),x) = -x^3*(-y(x)^2-2*y(x)*ln(x)-ln(x)^2)+1/ln(x)/x*y(x),y(x))
 

\[y \left (x \right ) = -\frac {\ln \left (x \right ) \left (4 x^{4} \ln \left (x \right )-x^{4}+8 c_{1}+16\right )}{4 x^{4} \ln \left (x \right )-x^{4}+8 c_{1}}\]