ODE No. 998

\[ y'(x)=\frac {(-\text {Ci}(x)+y(x)-\log (x))^2+\cos (x)}{x} \] Mathematica : cpu = 0.492351 (sec), leaf count = 27

DSolve[Derivative[1][y][x] == (Cos[x] + (-CosIntegral[x] - Log[x] + y[x])^2)/x,y[x],x]
 

\[\left \{\left \{y(x)\to \text {Ci}(x)+\frac {x^2}{-\frac {x^2}{2}+c_1}+\log (x)+1\right \}\right \}\] Maple : cpu = 0.299 (sec), leaf count = 27

dsolve(diff(y(x),x) = ((y(x)-ln(x)-Ci(x))^2+cos(x))/x,y(x))
 

\[y \left (x \right ) = \ln \left (x \right )+\Ci \left (x \right )+\frac {-c_{1} x^{2}+1}{c_{1} x^{2}+1}\]