\[ 4 y''(x)+4 \tan (x) y'(x)+y(x) \left (-5 \tan ^2(x)-2\right )=0 \] ✓ Mathematica : cpu = 0.0756578 (sec), leaf count = 180
\[\left \{\left \{y(x)\to \frac {3 (-1)^{5/8} c_2 \left (4 \sqrt [4]{-1} 2^{3/4} \sinh ^{-1}\left (\frac {1}{2} \sqrt [4]{-\frac {1}{2}} \sqrt [4]{-8 \cos ^2(2 x)-16 \cos (2 x)-8}\right )-i \sqrt [4]{-8 \cos ^2(2 x)-16 \cos (2 x)-8} \sqrt {8+i \sqrt {2} \sqrt {-8 \cos ^2(2 x)-16 \cos (2 x)-8}}\right )}{8 \sqrt [8]{2} \sqrt [8]{-8 \cos ^2(2 x)-16 \cos (2 x)-8}}-\frac {(-1)^{7/8} 2^{5/8} c_1}{\sqrt [8]{-8 \cos ^2(2 x)-16 \cos (2 x)-8}}\right \}\right \}\] ✓ Maple : cpu = 0.184 (sec), leaf count = 31
\[\left \{y \left (x \right ) = \frac {i c_{2} \cos \left (x \right ) \sin \left (x \right )-c_{2} \ln \left (i \cos \left (x \right )+\sin \left (x \right )\right )+c_{1}}{\sqrt {\cos \left (x \right )}}\right \}\]