\[ -(x+1) (a+b) y'(x)+a b x y(x)+x y''(x)=0 \] ✓ Mathematica : cpu = 0.071989 (sec), leaf count = 107
\[\left \{\left \{y(x)\to c_1 U\left (-\frac {-a^2-b a-a+b}{a-b},a+b+2,(a-b) x\right ) e^{(a+b+1) \log (x)+b x}+c_2 L_{\frac {-a^2-b a-a+b}{a-b}}^{a+b+1}((a-b) x) e^{(a+b+1) \log (x)+b x}\right \}\right \}\] ✓ Maple : cpu = 0.204 (sec), leaf count = 82
\[\left \{y \left (x \right ) = \left (c_{1} \KummerM \left (\frac {a^{2}+a b +a -b}{a -b}, a +b +2, \left (a -b \right ) x \right )+c_{2} \KummerU \left (\frac {a^{2}+a b +a -b}{a -b}, a +b +2, \left (a -b \right ) x \right )\right ) x^{a +b +1} {\mathrm e}^{b x}\right \}\]