\[ a x y''(x)+b y'(x)+c y(x)=0 \] ✓ Mathematica : cpu = 0.0376252 (sec), leaf count = 190
\[\left \{\left \{y(x)\to c_1 a^{\frac {1}{2} \left (\frac {b}{a}-1\right )} c^{\frac {1}{2} \left (1-\frac {b}{a}\right )} x^{\frac {1}{2} \left (1-\frac {b}{a}\right )} \Gamma \left (\frac {b}{a}\right ) J_{\frac {b}{a}-1}\left (\frac {2 \sqrt {c} \sqrt {x}}{\sqrt {a}}\right )+c_2 a^{\frac {1}{2} \left (1-\frac {b}{a}\right )-\frac {a-b}{a}} c^{\frac {a-b}{a}+\frac {1}{2} \left (\frac {b}{a}-1\right )} x^{\frac {a-b}{a}+\frac {1}{2} \left (\frac {b}{a}-1\right )} \Gamma \left (2-\frac {b}{a}\right ) J_{1-\frac {b}{a}}\left (\frac {2 \sqrt {c} \sqrt {x}}{\sqrt {a}}\right )\right \}\right \}\] ✓ Maple : cpu = 0.023 (sec), leaf count = 66
\[\left \{y \left (x \right ) = \left (c_{1} \BesselJ \left (\frac {-a +b}{a}, 2 \sqrt {\frac {c}{a}}\, \sqrt {x}\right )+c_{2} \BesselY \left (\frac {-a +b}{a}, 2 \sqrt {\frac {c}{a}}\, \sqrt {x}\right )\right ) x^{\frac {a -b}{2 a}}\right \}\]