\[ y(x) \left (-a b-b^2 x^2\right )+a y'(x)+x^2 y''(x)=0 \] ✓ Mathematica : cpu = 0.18039 (sec), leaf count = 43
\[\left \{\left \{y(x)\to c_2 e^{b x} \int _1^xe^{\frac {a}{K[1]}-2 b K[1]}dK[1]+c_1 e^{b x}\right \}\right \}\] ✓ Maple : cpu = 0.289 (sec), leaf count = 178
\[\left \{y \left (x \right ) = \left (c_{1} \mathit {HD}\left (4 \sqrt {2}\, \sqrt {a b}, -1-4 \sqrt {2}\, \sqrt {a b}, 8 \sqrt {2}\, \sqrt {a b}, -4 \sqrt {2}\, \sqrt {a b}+1, \frac {-a +\sqrt {2}\, \sqrt {a b}\, x}{a +\sqrt {2}\, \sqrt {a b}\, x}\right ) {\mathrm e}^{\frac {-b \,x^{2}+a}{x}}+c_{2} \mathit {HD}\left (-4 \sqrt {2}\, \sqrt {a b}, -1-4 \sqrt {2}\, \sqrt {a b}, 8 \sqrt {2}\, \sqrt {a b}, -4 \sqrt {2}\, \sqrt {a b}+1, \frac {-a +\sqrt {2}\, \sqrt {a b}\, x}{a +\sqrt {2}\, \sqrt {a b}\, x}\right ) {\mathrm e}^{b x}\right ) \sqrt {x}\right \}\]