\[ y(x) \left (a x+l x^2-n (n+1)\right )+x^2 y''(x)+2 x y'(x)=0 \] ✓ Mathematica : cpu = 0.0400409 (sec), leaf count = 142
\[\left \{\left \{y(x)\to c_1 e^{n \log (x)-i \sqrt {l} x} U\left (\frac {i \left (a-2 i \sqrt {l} n-2 i \sqrt {l}\right )}{2 \sqrt {l}},2 n+2,2 i \sqrt {l} x\right )+c_2 e^{n \log (x)-i \sqrt {l} x} L_{-\frac {i \left (a-2 i \sqrt {l} n-2 i \sqrt {l}\right )}{2 \sqrt {l}}}^{2 n+1}\left (2 i \sqrt {l} x\right )\right \}\right \}\] ✓ Maple : cpu = 0.221 (sec), leaf count = 49
\[\left \{y \left (x \right ) = \frac {c_{1} \WhittakerM \left (-\frac {i a}{2 \sqrt {l}}, n +\frac {1}{2}, 2 i \sqrt {l}\, x \right )+c_{2} \WhittakerW \left (-\frac {i a}{2 \sqrt {l}}, n +\frac {1}{2}, 2 i \sqrt {l}\, x \right )}{x}\right \}\]