\[ x^2 y''(x)+(x+3) x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.0293922 (sec), leaf count = 80
\[\left \{\left \{y(x)\to c_1 U\left (2+\sqrt {2},1+2 \sqrt {2},x\right ) e^{\left (\sqrt {2}-1\right ) \log (x)-x}+c_2 L_{-2-\sqrt {2}}^{2 \sqrt {2}}(x) e^{\left (\sqrt {2}-1\right ) \log (x)-x}\right \}\right \}\] ✓ Maple : cpu = 0.23 (sec), leaf count = 93
\[\left \{y \left (x \right ) = -\frac {\left (-c_{1} \left (x +\sqrt {2}+1\right ) \BesselI \left (-\frac {1}{2}+\sqrt {2}, \frac {x}{2}\right )-c_{1} \left (x -\sqrt {2}+1\right ) \BesselI \left (\frac {1}{2}+\sqrt {2}, \frac {x}{2}\right )+c_{2} \left (\left (-x -\sqrt {2}-1\right ) \BesselK \left (-\frac {1}{2}+\sqrt {2}, \frac {x}{2}\right )+\left (x -\sqrt {2}+1\right ) \BesselK \left (\frac {1}{2}+\sqrt {2}, \frac {x}{2}\right )\right )\right ) {\mathrm e}^{-\frac {x}{2}}}{\sqrt {x}}\right \}\]