\[ y(x) \left (a b x+c x^2+d\right )+x (2 a x+b) y'(x)+x^2 y''(x)=0 \] ✓ Mathematica : cpu = 0.0881391 (sec), leaf count = 120
\[\left \{\left \{y(x)\to c_1 e^{\frac {1}{2} (-2 a x-(b-1) \log (x))} J_{\frac {1}{2} \sqrt {b^2-2 b-4 d+1}}\left (-i \sqrt {a^2-c} x\right )+c_2 e^{\frac {1}{2} (-2 a x-(b-1) \log (x))} Y_{\frac {1}{2} \sqrt {b^2-2 b-4 d+1}}\left (-i \sqrt {a^2-c} x\right )\right \}\right \}\] ✓ Maple : cpu = 0.081 (sec), leaf count = 76
\[\left \{y \left (x \right ) = \left (c_{1} \BesselJ \left (\frac {\sqrt {b^{2}-2 b -4 d +1}}{2}, \sqrt {-a^{2}+c}\, x \right )+c_{2} \BesselY \left (\frac {\sqrt {b^{2}-2 b -4 d +1}}{2}, \sqrt {-a^{2}+c}\, x \right )\right ) x^{-\frac {b}{2}+\frac {1}{2}} {\mathrm e}^{-a x}\right \}\]