\[ (a x+b) y'(x)+c y(x)+\left (x^2-1\right ) y''(x)=0 \] ✓ Mathematica : cpu = 0.141176 (sec), leaf count = 193
\[\left \{\left \{y(x)\to c_2 2^{\frac {1}{2} (a+b-2)} (x-1)^{\frac {1}{2} (-a-b+2)} \, _2F_1\left (-\frac {b}{2}-\frac {1}{2} \sqrt {a^2-2 a-4 c+1}+\frac {1}{2},-\frac {b}{2}+\frac {1}{2} \sqrt {a^2-2 a-4 c+1}+\frac {1}{2};-\frac {a}{2}-\frac {b}{2}+2;\frac {1-x}{2}\right )+c_1 \, _2F_1\left (\frac {a}{2}-\frac {1}{2} \sqrt {a^2-2 a-4 c+1}-\frac {1}{2},\frac {a}{2}+\frac {1}{2} \sqrt {a^2-2 a-4 c+1}-\frac {1}{2};\frac {a}{2}+\frac {b}{2};\frac {1-x}{2}\right )\right \}\right \}\] ✓ Maple : cpu = 0.18 (sec), leaf count = 134
\[\left \{y \left (x \right ) = c_{2} \left (\frac {x}{2}+\frac {1}{2}\right )^{-\frac {a}{2}+\frac {b}{2}+1} \hypergeom \left (\left [\frac {b}{2}+\frac {1}{2}+\frac {\sqrt {a^{2}-2 a -4 c +1}}{2}, \frac {b}{2}+\frac {1}{2}-\frac {\sqrt {a^{2}-2 a -4 c +1}}{2}\right ], \left [-\frac {a}{2}+\frac {b}{2}+2\right ], \frac {x}{2}+\frac {1}{2}\right )+c_{1} \hypergeom \left (\left [\frac {a}{2}-\frac {1}{2}+\frac {\sqrt {a^{2}-2 a -4 c +1}}{2}, \frac {a}{2}-\frac {1}{2}-\frac {\sqrt {a^{2}-2 a -4 c +1}}{2}\right ], \left [\frac {a}{2}-\frac {b}{2}\right ], \frac {x}{2}+\frac {1}{2}\right )\right \}\]