\[ x y'(x)-y(x) f\left (x^a y(x)^b\right )=0 \] ✓ Mathematica : cpu = 0.317384 (sec), leaf count = 186
\[\text {Solve}\left [\int _1^{y(x)}\left (-\frac {b}{\left (a+b f\left (x^a K[2]^b\right )\right ) K[2]}-\int _1^x\left (\frac {b^2 K[1]^{a-1} K[2]^{b-1} f'\left (K[1]^a K[2]^b\right )}{a+b f\left (K[1]^a K[2]^b\right )}-\frac {b^3 f\left (K[1]^a K[2]^b\right ) K[1]^{a-1} K[2]^{b-1} f'\left (K[1]^a K[2]^b\right )}{\left (a+b f\left (K[1]^a K[2]^b\right )\right )^2}\right )dK[1]\right )dK[2]+\int _1^x\frac {b f\left (K[1]^a y(x)^b\right )}{\left (a+b f\left (K[1]^a y(x)^b\right )\right ) K[1]}dK[1]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.127 (sec), leaf count = 39
\[\left \{-c_{1}+\int _{\textit {\_b}}^{y \left (x \right )}\frac {1}{\left (b f \left (\textit {\_a}^{b} x^{a}\right )+a \right ) \textit {\_a}}d \textit {\_a} -\frac {\ln \left (x \right )}{b} = 0\right \}\]