\[ \left (a x^2+b\right ) y'(x)+c x y(x)+x \left (x^2-1\right ) y''(x)=0 \] ✓ Mathematica : cpu = 0.229986 (sec), leaf count = 172
\[\left \{\left \{y(x)\to c_1 \, _2F_1\left (\frac {a}{4}-\frac {1}{4} \sqrt {a^2-2 a-4 c+1}-\frac {1}{4},\frac {a}{4}+\frac {1}{4} \sqrt {a^2-2 a-4 c+1}-\frac {1}{4};\frac {1}{2}-\frac {b}{2};x^2\right )+i^{b+1} c_2 x^{b+1} \, _2F_1\left (\frac {a}{4}+\frac {b}{2}-\frac {1}{4} \sqrt {a^2-2 a-4 c+1}+\frac {1}{4},\frac {a}{4}+\frac {b}{2}+\frac {1}{4} \sqrt {a^2-2 a-4 c+1}+\frac {1}{4};\frac {b}{2}+\frac {3}{2};x^2\right )\right \}\right \}\] ✓ Maple : cpu = 0.182 (sec), leaf count = 122
\[\left \{y \left (x \right ) = c_{2} x^{b +1} \hypergeom \left (\left [\frac {a}{4}+\frac {b}{2}+\frac {1}{4}+\frac {\sqrt {a^{2}-2 a -4 c +1}}{4}, \frac {a}{4}+\frac {b}{2}+\frac {1}{4}-\frac {\sqrt {a^{2}-2 a -4 c +1}}{4}\right ], \left [\frac {b}{2}+\frac {3}{2}\right ], x^{2}\right )+c_{1} \hypergeom \left (\left [\frac {a}{4}-\frac {1}{4}+\frac {\sqrt {a^{2}-2 a -4 c +1}}{4}, \frac {a}{4}-\frac {1}{4}-\frac {\sqrt {a^{2}-2 a -4 c +1}}{4}\right ], \left [-\frac {b}{2}+\frac {1}{2}\right ], x^{2}\right )\right \}\]