\[ y''(x)=\frac {2 y'(x)}{(x-2) x}-\frac {y(x)}{(x-2) x^2} \] ✓ Mathematica : cpu = 0.145842 (sec), leaf count = 104
\[\left \{\left \{y(x)\to \left (-\frac {1}{2}\right )^{-\frac {1}{\sqrt {2}}} c_1 x^{-\frac {1}{\sqrt {2}}} \, _2F_1\left (-\frac {1}{\sqrt {2}},-1-\frac {1}{\sqrt {2}};1-\sqrt {2};\frac {x}{2}\right )+\left (-\frac {1}{2}\right )^{\frac {1}{\sqrt {2}}} c_2 x^{\frac {1}{\sqrt {2}}} \, _2F_1\left (\frac {1}{\sqrt {2}},-1+\frac {1}{\sqrt {2}};1+\sqrt {2};\frac {x}{2}\right )\right \}\right \}\] ✓ Maple : cpu = 0.811 (sec), leaf count = 81
\[\left \{y \left (x \right ) = \left (x -2\right )^{2} \left (c_{1} x^{-\frac {\sqrt {2}}{2}} \hypergeom \left (\left [2-\frac {\sqrt {2}}{2}, 1-\frac {\sqrt {2}}{2}\right ], \left [1-\sqrt {2}\right ], \frac {x}{2}\right )+c_{2} x^{\frac {\sqrt {2}}{2}} \hypergeom \left (\left [2+\frac {\sqrt {2}}{2}, 1+\frac {\sqrt {2}}{2}\right ], \left [1+\sqrt {2}\right ], \frac {x}{2}\right )\right )\right \}\]