\[ y''(x)=-\frac {y'(x) \left (-x (a (\delta +\text {gamma1})+\alpha +\beta -\delta +1)+a \text {gamma1}+x^2 (\alpha +\beta +1)\right )}{(x-1) x (x-a)}-\frac {y(x) (\alpha \beta x-q)}{(x-1) x (x-a)} \] ✓ Mathematica : cpu = 0.723138 (sec), leaf count = 67
\[\left \{\left \{y(x)\to c_2 x^{1-\text {gamma1}} \text {HeunG}[a,q-(\text {gamma1}-1) ((a-1) \delta +\alpha +\beta -\text {gamma1}+1),\beta -\text {gamma1}+1,\alpha -\text {gamma1}+1,2-\text {gamma1},\delta ,x]+c_1 \text {HeunG}[a,q,\alpha ,\beta ,\text {gamma1},\delta ,x]\right \}\right \}\] ✓ Maple : cpu = 0.328 (sec), leaf count = 64
\[\{y \left (x \right ) = c_{2} x^{-\gamma 1 +1} \mathit {HG}\left (a , q -\left (\gamma 1 -1\right ) \left (\alpha +\beta +\left (a -1\right ) \delta -\gamma 1 +1\right ), \beta -\gamma 1 +1, \alpha -\gamma 1 +1, -\gamma 1 +2, \delta , x\right )+c_{1} \mathit {HG}\left (a , q , \alpha , \beta , \gamma 1 , \delta , x\right )\}\]