\[ y''(x)=-\frac {y(x)}{x^4}-\frac {\left (x^2+1\right ) y'(x)}{x^3} \] ✓ Mathematica : cpu = 0.10466 (sec), leaf count = 76
\[\left \{\left \{y(x)\to c_2 G_{1,2}^{2,0}\left (-\frac {1}{2 x^2}|\begin {array}{c} \frac {3}{2} \\ 0,0 \\\end {array}\right )+c_1 e^{\frac {1}{4 x^2}} \left (\left (1-\frac {1}{2 x^2}\right ) I_0\left (\frac {1}{4 x^2}\right )+\frac {I_1\left (\frac {1}{4 x^2}\right )}{2 x^2}\right )\right \}\right \}\] ✓ Maple : cpu = 0.118 (sec), leaf count = 85
\[\left \{y \left (x \right ) = \frac {c_{1} \left (2 x^{2} \BesselI \left (0, \frac {1}{4 x^{2}}\right )-\BesselI \left (0, \frac {1}{4 x^{2}}\right )+\BesselI \left (1, \frac {1}{4 x^{2}}\right )\right ) {\mathrm e}^{\frac {1}{4 x^{2}}}}{x^{2}}+\frac {c_{2} \left (2 x^{2} \BesselK \left (0, -\frac {1}{4 x^{2}}\right )-\BesselK \left (0, -\frac {1}{4 x^{2}}\right )+\BesselK \left (1, -\frac {1}{4 x^{2}}\right )\right ) {\mathrm e}^{\frac {1}{4 x^{2}}}}{x^{2}}\right \}\]