\[ y''(x)=-\frac {\left (a x^2+a-1\right ) y'(x)}{x \left (x^2+1\right )}-\frac {y(x) \left (b x^2+c\right )}{x^2 \left (x^2+1\right )} \] ✓ Mathematica : cpu = 0.578118 (sec), leaf count = 288
\[\left \{\left \{y(x)\to c_1 x^{\frac {1}{2} \left (-\sqrt {a^2-4 a-4 c+4}-a+2\right )} \, _2F_1\left (-\frac {1}{4} \sqrt {a^2-2 a-4 b+1}-\frac {1}{4} \sqrt {a^2-4 a-4 c+4}+\frac {1}{4},\frac {1}{4} \sqrt {a^2-2 a-4 b+1}-\frac {1}{4} \sqrt {a^2-4 a-4 c+4}+\frac {1}{4};1-\frac {1}{2} \sqrt {a^2-4 a-4 c+4};-x^2\right )+c_2 x^{\frac {1}{2} \left (\sqrt {a^2-4 a-4 c+4}-a+2\right )} \, _2F_1\left (-\frac {1}{4} \sqrt {a^2-2 a-4 b+1}+\frac {1}{4} \sqrt {a^2-4 a-4 c+4}+\frac {1}{4},\frac {1}{4} \sqrt {a^2-2 a-4 b+1}+\frac {1}{4} \sqrt {a^2-4 a-4 c+4}+\frac {1}{4};\frac {1}{2} \sqrt {a^2-4 a-4 c+4}+1;-x^2\right )\right \}\right \}\] ✓ Maple : cpu = 0.145 (sec), leaf count = 97
\[\left \{y \left (x \right ) = \left (c_{1} \LegendreP \left (-\frac {1}{2}+\frac {\sqrt {a^{2}-2 a -4 b +1}}{2}, \frac {\sqrt {a^{2}-4 a -4 c +4}}{2}, \sqrt {x^{2}+1}\right )+c_{2} \LegendreQ \left (-\frac {1}{2}+\frac {\sqrt {a^{2}-2 a -4 b +1}}{2}, \frac {\sqrt {a^{2}-4 a -4 c +4}}{2}, \sqrt {x^{2}+1}\right )\right ) x^{-\frac {a}{2}+1}\right \}\]