\[ y''(x)=-\frac {\left (a x^2+a-2\right ) y'(x)}{x \left (x^2-1\right )}-\frac {b y(x)}{x^2} \] ✓ Mathematica : cpu = 0.601191 (sec), leaf count = 236
\[\left \{\left \{y(x)\to c_1 (-1)^{\frac {1}{4} \left (-\sqrt {a^2-2 a-4 b+1}+a-1\right )} x^{\frac {1}{2} \left (-\sqrt {a^2-2 a-4 b+1}+a-1\right )} \, _2F_1\left (\frac {a}{2}-\frac {1}{2},\frac {a}{2}-\frac {1}{2} \sqrt {a^2-2 a-4 b+1}-\frac {1}{2};1-\frac {1}{2} \sqrt {a^2-2 a-4 b+1};x^2\right )+c_2 (-1)^{\frac {1}{4} \left (\sqrt {a^2-2 a-4 b+1}+a-1\right )} x^{\frac {1}{2} \left (\sqrt {a^2-2 a-4 b+1}+a-1\right )} \, _2F_1\left (\frac {a}{2}-\frac {1}{2},\frac {a}{2}+\frac {1}{2} \sqrt {a^2-2 a-4 b+1}-\frac {1}{2};\frac {1}{2} \sqrt {a^2-2 a-4 b+1}+1;x^2\right )\right \}\right \}\] ✓ Maple : cpu = 0.171 (sec), leaf count = 161
\[\left \{y \left (x \right ) = \left (c_{1} x^{\frac {a}{2}-\frac {1}{2}+\frac {\sqrt {a^{2}-2 a -4 b +1}}{2}} \hypergeom \left (\left [-\frac {a}{2}+\frac {3}{2}, -\frac {a}{2}+\frac {3}{2}+\frac {\sqrt {a^{2}-2 a -4 b +1}}{2}\right ], \left [1+\frac {\sqrt {a^{2}-2 a -4 b +1}}{2}\right ], x^{2}\right )+c_{2} x^{\frac {a}{2}-\frac {1}{2}-\frac {\sqrt {a^{2}-2 a -4 b +1}}{2}} \hypergeom \left (\left [-\frac {a}{2}+\frac {3}{2}, -\frac {a}{2}+\frac {3}{2}-\frac {\sqrt {a^{2}-2 a -4 b +1}}{2}\right ], \left [1-\frac {\sqrt {a^{2}-2 a -4 b +1}}{2}\right ], x^{2}\right )\right ) \left (x^{2}-1\right )^{-a +2}\right \}\]