\[ y''(x)=-\frac {y(x) \left (-a^2 \left (x^2-1\right )^2-m^2-n (n+1) \left (x^2-1\right )\right )}{\left (x^2-1\right )^2}-\frac {2 x y'(x)}{x^2-1} \] ✓ Mathematica : cpu = 0.23455 (sec), leaf count = 113
\[\left \{\left \{y(x)\to c_1 \left (x^2-1\right )^{m/2} \text {HeunC}\left [\frac {1}{4} \left (-a^2-m (m+1)+n^2+n\right ),-\frac {a^2}{4},\frac {1}{2},m+1,0,x^2\right ]+c_2 x \left (x^2-1\right )^{m/2} \text {HeunC}\left [\frac {1}{4} \left (-a^2-(m-n+1) (m+n+2)\right ),-\frac {a^2}{4},\frac {3}{2},m+1,0,x^2\right ]\right \}\right \}\] ✓ Maple : cpu = 0.253 (sec), leaf count = 84
\[\left \{y \left (x \right ) = \left (c_{2} x \HeunC \left (0, \frac {1}{2}, m , -\frac {a^{2}}{4}, \frac {1}{4} a^{2}+\frac {1}{4} m^{2}-\frac {1}{4} n^{2}-\frac {1}{4} n +\frac {1}{4}, x^{2}\right )+c_{1} \HeunC \left (0, -\frac {1}{2}, m , -\frac {a^{2}}{4}, \frac {1}{4} a^{2}+\frac {1}{4} m^{2}-\frac {1}{4} n^{2}-\frac {1}{4} n +\frac {1}{4}, x^{2}\right )\right ) \left (x^{2}-1\right )^{\frac {m}{2}}\right \}\]