\[ y''(x)=-\frac {y(x) \left (v (v+1) (x-1)-a^2 x\right )}{4 (x-1)^2 x^2}-\frac {(3 x-1) y'(x)}{2 (x-1) x} \] ✓ Mathematica : cpu = 0.262985 (sec), leaf count = 235
\[\left \{\left \{y(x)\to c_2 (-1)^{\frac {1}{2} (-2 v-3)+1} x^{\frac {1}{4} (-2 v-3)+1} e^{\frac {1}{4} (-2 \log (1-x)-\log (x))} (x-1)^{\frac {1}{2} \left (\frac {1}{2} (a+v+1)+\frac {1}{2} (a+v+2)+\frac {1}{2} (-2 v-3)+1\right )} \, _2F_1\left (\frac {1}{2} (-2 v-3)+\frac {1}{2} (a+v+1)+1,\frac {1}{2} (-2 v-3)+\frac {1}{2} (a+v+2)+1;\frac {1}{2} (-2 v-3)+2;x\right )+c_1 x^{\frac {1}{4} (2 v+3)} e^{\frac {1}{4} (-2 \log (1-x)-\log (x))} (x-1)^{\frac {1}{2} \left (\frac {1}{2} (a+v+1)+\frac {1}{2} (a+v+2)+\frac {1}{2} (-2 v-3)+1\right )} \, _2F_1\left (\frac {1}{2} (a+v+1),\frac {1}{2} (a+v+2);\frac {1}{2} (2 v+3);x\right )\right \}\right \}\] ✓ Maple : cpu = 0.112 (sec), leaf count = 76
\[\left \{y \left (x \right ) = \left (c_{1} x^{-\frac {v}{2}} \hypergeom \left (\left [-\frac {a}{2}-\frac {v}{2}, -\frac {a}{2}-\frac {v}{2}+\frac {1}{2}\right ], \left [-v +\frac {1}{2}\right ], x\right )+c_{2} x^{\frac {v}{2}+\frac {1}{2}} \hypergeom \left (\left [-\frac {a}{2}+\frac {v}{2}+1, -\frac {a}{2}+\frac {v}{2}+\frac {1}{2}\right ], \left [v +\frac {3}{2}\right ], x\right )\right ) \left (x -1\right )^{-\frac {a}{2}}\right \}\]