\[ y''(x)=\left (a^2-n^2\right ) y(x)-2 n \coth (x) y'(x) \] ✓ Mathematica : cpu = 0.758103 (sec), leaf count = 273
\[\left \{\left \{y(x)\to \frac {c_2 (-1)^{\frac {1}{2} (-2 n-1)+1} \tanh ^2(x)^{\frac {1}{4} (-2 n-1)+1} \left (\tanh ^2(x)-1\right )^{\frac {1}{2} \left (\frac {a+n}{2}+\frac {1}{2} (a+n+1)+\frac {1}{2} (-2 n-1)+1\right )} \, _2F_1\left (\frac {1}{2} (-2 n-1)+\frac {a+n}{2}+1,\frac {1}{2} (-2 n-1)+\frac {1}{2} (a+n+1)+1;\frac {1}{2} (-2 n-1)+2;\tanh ^2(x)\right ) \exp \left (\frac {1}{2} (n-1) \log \left (1-\tanh ^2(x)\right )-n \log (\tanh (x))\right )}{\sqrt {\tanh (x)}}+\frac {c_1 \tanh ^2(x)^{\frac {1}{4} (2 n+1)} \left (\tanh ^2(x)-1\right )^{\frac {1}{2} \left (\frac {a+n}{2}+\frac {1}{2} (a+n+1)+\frac {1}{2} (-2 n-1)+1\right )} \, _2F_1\left (\frac {a+n}{2},\frac {1}{2} (a+n+1);\frac {1}{2} (2 n+1);\tanh ^2(x)\right ) \exp \left (\frac {1}{2} (n-1) \log \left (1-\tanh ^2(x)\right )-n \log (\tanh (x))\right )}{\sqrt {\tanh (x)}}\right \}\right \}\] ✓ Maple : cpu = 0.154 (sec), leaf count = 36
\[\left \{y \left (x \right ) = \left (c_{1} \LegendreP \left (a -\frac {1}{2}, n -\frac {1}{2}, \cosh \left (x \right )\right )+c_{2} \LegendreQ \left (a -\frac {1}{2}, n -\frac {1}{2}, \cosh \left (x \right )\right )\right ) \left (\sinh ^{-n +\frac {1}{2}}\left (x \right )\right )\right \}\]