\[ y''(x)=y(x) \left (-\csc ^2(x)\right ) \left (-\left (\left (a^2 b^2-(a+1)^2\right ) \sin ^2(x)\right )-a (a+1) b \sin (2 x)+(1-a) a\right ) \] ✓ Mathematica : cpu = 0.860577 (sec), leaf count = 129
\[\left \{\left \{y(x)\to c_2 \left (e^{-a b x} \sin ^{-a-1}(x)+\frac {(2 a+1) \left (-1+e^{2 i x}\right ) e^{-a b x} \sin ^{a-2 (a+1)}(x) \, _2F_1\left (1,i a (b+i);i b a+a+2;e^{2 i x}\right ) (b \sin (x)+\cos (x))}{2 (a (b-i)-i)}\right )+c_1 e^{a b x} \sin ^a(x) (b \sin (x)+\cos (x))\right \}\right \}\] ✓ Maple : cpu = 1.349 (sec), leaf count = 203
\[\left \{y \left (x \right ) = \frac {\left (c_{2} \left (\int -2 \,{\mathrm e}^{-2 \left (\int \frac {-a \,b^{2}+\left (-2 a -1\right ) b \sin \left (2 x \right )+\left (a \,b^{2}-a -2\right ) \left (\cos ^{2}\left (2 x \right )\right )-a +\left (-2 \left (a +1\right ) b \sin \left (2 x \right )-2 a -1\right ) \cos \left (2 x \right )+1}{\left (\cos \left (2 x \right )+1\right ) \left (b \cos \left (2 x \right )-b -\sin \left (2 x \right )\right )}d x \right )} \sin \left (2 x \right )d x \right )+c_{1}\right ) {\mathrm e}^{\int \frac {-a \,b^{2}+\left (-2 a -1\right ) b \sin \left (2 x \right )+\left (a \,b^{2}-a -2\right ) \left (\cos ^{2}\left (2 x \right )\right )-a +\left (-2 \left (a +1\right ) b \sin \left (2 x \right )-2 a -1\right ) \cos \left (2 x \right )+1}{\left (\cos \left (2 x \right )+1\right ) \left (b \cos \left (2 x \right )-b -\sin \left (2 x \right )\right )}d x}}{\sqrt {\sin \left (2 x \right )}}\right \}\]