\[ x^{2 c-2} y'(x)+(c-1) x^{2 c-3} y(x)+y^{(3)}(x)=0 \] ✓ Mathematica : cpu = 0.0304634 (sec), leaf count = 183
\[\left \{\left \{y(x)\to c_1 \, _1F_2\left (\frac {1}{2}-\frac {1}{2 c};1-\frac {1}{c},1-\frac {1}{2 c};-\frac {x^{2 c}}{4 c^2}\right )+4^{-1/c} c^{-2/c} c_3 \left (x^{2 c}\right )^{\frac {1}{c}} \, _1F_2\left (\frac {1}{2}+\frac {1}{2 c};1+\frac {1}{2 c},1+\frac {1}{c};-\frac {x^{2 c}}{4 c^2}\right )+2^{-1/c} c^{-1/c} c_2 \left (x^{2 c}\right )^{\left .\frac {1}{2}\right /c} \, _1F_2\left (\frac {1}{2};1-\frac {1}{2 c},1+\frac {1}{2 c};-\frac {x^{2 c}}{4 c^2}\right )\right \}\right \}\] ✓ Maple : cpu = 0.131 (sec), leaf count = 73
\[\left \{y \left (x \right ) = \left (c_{1} \BesselJ \left (\frac {1}{2 c}, \frac {x^{c}}{2 c}\right )^{2}+c_{2} \BesselY \left (\frac {1}{2 c}, \frac {x^{c}}{2 c}\right )^{2}+c_{3} \BesselJ \left (\frac {1}{2 c}, \frac {x^{c}}{2 c}\right ) \BesselY \left (\frac {1}{2 c}, \frac {x^{c}}{2 c}\right )\right ) x\right \}\]