\[ -y'(x) (a+4 n (n+1) \wp (x;\text {g2},\text {g3}))-2 n (n+1) y(x) \wp '(x;\text {g2},\text {g3})+y^{(3)}(x)=0 \] ✗ Mathematica : cpu = 0.0175501 (sec), leaf count = 0 , could not solve
DSolve[-2*n*(1 + n)*WeierstrassPPrime[x, {g2, g3}]*y[x] - (a + 4*n*(1 + n)*WeierstrassP[x, {g2, g3}])*Derivative[1][y][x] + Derivative[3][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0 , result contains DESol
\[\left \{y \left (x \right ) = \mathit {DESol}\left (\left \{\left (-n^{2} \WeierstrassP \left (x , \mathit {g2} , \mathit {g3}\right )-n \WeierstrassP \left (x , \mathit {g2} , \mathit {g3}\right )-\frac {a}{4}\right ) \textit {\_Y} \left (x \right )+\frac {d^{2}}{d x^{2}}\textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )^{2}\right \}\]