\[ -36 n^2 y'(x) \wp (x;\text {g2},\text {g3})-2 (n+3) (4 n-3) n y(x) \phi '(x)+27 y^{(3)}(x)=0 \] ✗ Mathematica : cpu = 0.166206 (sec), leaf count = 0 , could not solve
DSolve[-2*n*(3 + n)*(-3 + 4*n)*y[x]*Derivative[1][phi][x] - 36*n^2*WeierstrassP[x, {g2, g3}]*Derivative[1][y][x] + 27*Derivative[3][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0 , result contains DESol
\[\{y \left (x \right ) = \mathit {DESol}\left (\left \{-36 n^{2} \WeierstrassP \left (x , \mathit {g2} , \mathit {g3}\right ) \left (\frac {d}{d x}\textit {\_Y} \left (x \right )\right )+\left (-8 n^{3} \mathcal {P}^{\prime }\left (x ;\mathit {g2} ,\mathit {g3} \right )-18 n^{2} \mathcal {P}^{\prime }\left (x ;\mathit {g2} ,\mathit {g3} \right )+18 n \mathcal {P}^{\prime }\left (x ;\mathit {g2} ,\mathit {g3} \right )\right ) \textit {\_Y} \left (x \right )+27 \frac {d^{3}}{d x^{3}}\textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\}\]