\[ x y(x) \left (a y'(x)+b y''(x)+c y^{(3)}(x)+e y^{(4)}(x)\right )=0 \] ✓ Mathematica : cpu = 0.181056 (sec), leaf count = 214
\[\left \{\{y(x)\to 0\},\left \{y(x)\to \frac {c_1 e^{x \text {Root}\left [\text {$\#$1}^3+\frac {\text {$\#$1}^2 c}{e}+\frac {\text {$\#$1} b}{e}+\frac {a}{e}\& ,1\right ]}}{\text {Root}\left [\text {$\#$1}^3+\frac {\text {$\#$1}^2 c}{e}+\frac {\text {$\#$1} b}{e}+\frac {a}{e}\& ,1\right ]}+\frac {c_2 e^{x \text {Root}\left [\text {$\#$1}^3+\frac {\text {$\#$1}^2 c}{e}+\frac {\text {$\#$1} b}{e}+\frac {a}{e}\& ,2\right ]}}{\text {Root}\left [\text {$\#$1}^3+\frac {\text {$\#$1}^2 c}{e}+\frac {\text {$\#$1} b}{e}+\frac {a}{e}\& ,2\right ]}+\frac {c_3 e^{x \text {Root}\left [\text {$\#$1}^3+\frac {\text {$\#$1}^2 c}{e}+\frac {\text {$\#$1} b}{e}+\frac {a}{e}\& ,3\right ]}}{\text {Root}\left [\text {$\#$1}^3+\frac {\text {$\#$1}^2 c}{e}+\frac {\text {$\#$1} b}{e}+\frac {a}{e}\& ,3\right ]}+c_4\right \}\right \}\] ✓ Maple : cpu = 0.042 (sec), leaf count = 679
\[\left \{y \left (x \right ) = 0, y \left (x \right ) = c_{2} {\mathrm e}^{-\frac {\left (-12 b e +\left (12 i b e -4 i c^{2}+i \left (-108 a \,e^{2}+36 b c e -8 c^{3}+12 \sqrt {3}\, \sqrt {27 a^{2} e^{2}+4 a \,c^{3}-b^{2} c^{2}+\left (-18 a b c +4 b^{3}\right ) e}\, e \right )^{\frac {2}{3}}\right ) \sqrt {3}+\left (2 c +\left (-108 a \,e^{2}+36 b c e -8 c^{3}+12 \sqrt {3}\, \sqrt {27 a^{2} e^{2}+4 a \,c^{3}-b^{2} c^{2}+\left (-18 a b c +4 b^{3}\right ) e}\, e \right )^{\frac {1}{3}}\right )^{2}\right ) x}{12 \left (-108 a \,e^{2}+36 b c e -8 c^{3}+12 \sqrt {3}\, \sqrt {27 a^{2} e^{2}+4 a \,c^{3}-b^{2} c^{2}+\left (-18 a b c +4 b^{3}\right ) e}\, e \right )^{\frac {1}{3}} e}}+c_{3} {\mathrm e}^{\frac {\left (12 b e +\left (12 i b e -4 i c^{2}+i \left (-108 a \,e^{2}+36 b c e -8 c^{3}+12 \sqrt {3}\, \sqrt {27 a^{2} e^{2}+4 a \,c^{3}-b^{2} c^{2}+\left (-18 a b c +4 b^{3}\right ) e}\, e \right )^{\frac {2}{3}}\right ) \sqrt {3}-\left (2 c +\left (-108 a \,e^{2}+36 b c e -8 c^{3}+12 \sqrt {3}\, \sqrt {27 a^{2} e^{2}+4 a \,c^{3}-b^{2} c^{2}+\left (-18 a b c +4 b^{3}\right ) e}\, e \right )^{\frac {1}{3}}\right )^{2}\right ) x}{12 \left (-108 a \,e^{2}+36 b c e -8 c^{3}+12 \sqrt {3}\, \sqrt {27 a^{2} e^{2}+4 a \,c^{3}-b^{2} c^{2}+\left (-18 a b c +4 b^{3}\right ) e}\, e \right )^{\frac {1}{3}} e}}+c_{4} {\mathrm e}^{\frac {\left (-12 b e +4 c^{2}-2 \left (-108 a \,e^{2}+36 b c e -8 c^{3}+12 \sqrt {3}\, \sqrt {27 a^{2} e^{2}+4 a \,c^{3}-b^{2} c^{2}+\left (-18 a b c +4 b^{3}\right ) e}\, e \right )^{\frac {1}{3}} c +\left (-108 a \,e^{2}+36 b c e -8 c^{3}+12 \sqrt {3}\, \sqrt {27 a^{2} e^{2}+4 a \,c^{3}-b^{2} c^{2}+\left (-18 a b c +4 b^{3}\right ) e}\, e \right )^{\frac {2}{3}}\right ) x}{6 \left (-108 a \,e^{2}+36 b c e -8 c^{3}+12 \sqrt {3}\, \sqrt {27 a^{2} e^{2}+4 a \,c^{3}-b^{2} c^{2}+\left (-18 a b c +4 b^{3}\right ) e}\, e \right )^{\frac {1}{3}} e}}+c_{1}\right \}\]