\[ y''(x)-6 y(x)^2+4 y(x)=0 \] ✓ Mathematica : cpu = 0.505858 (sec), leaf count = 373
\[\text {Solve}\left [\frac {4 \left (\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,2\right ]-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]\right ) \left (y(x)-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,1\right ]\right ) \left (y(x)-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,2\right ]\right ) \left (y(x)-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]\right ) F\left (\sin ^{-1}\left (\sqrt {\frac {\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]-y(x)}{\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,2\right ]}}\right )|\frac {\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,2\right ]-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]}{\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,1\right ]-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]}\right ){}^2}{\left (4 y(x)^3-4 y(x)^2+c_1\right ) \left (\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,1\right ]\right ) \left (\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,2\right ]\right )}=(x+c_2){}^2,y(x)\right ]\] ✓ Maple : cpu = 0.941 (sec), leaf count = 59
\[\left \{-c_{2}-x +\int _{}^{y \left (x \right )}\frac {1}{\sqrt {4 \textit {\_a}^{3}-4 \textit {\_a}^{2}+c_{1}}}d \textit {\_a} = 0, -c_{2}-x +\int _{}^{y \left (x \right )}-\frac {1}{\sqrt {4 \textit {\_a}^{3}-4 \textit {\_a}^{2}+c_{1}}}d \textit {\_a} = 0\right \}\]