\[ 2 a^2 x+2 x^2 y'(x)-2 y(x)^2-3 x y(x)=0 \] ✓ Mathematica : cpu = 0.152179 (sec), leaf count = 131
\[\left \{\left \{y(x)\to -\frac {x^2 \left (-\frac {e^{\frac {2 a}{\sqrt {x}}}}{4 a \sqrt {x}}+\frac {e^{\frac {2 a}{\sqrt {x}}}}{2 x}+c_1 \left (\frac {a e^{-\frac {2 a}{\sqrt {x}}}}{x}+\frac {e^{-\frac {2 a}{\sqrt {x}}}}{2 \sqrt {x}}\right )\right )}{-\frac {\sqrt {x} e^{\frac {2 a}{\sqrt {x}}}}{2 a}+c_1 \sqrt {x} e^{-\frac {2 a}{\sqrt {x}}}}\right \}\right \}\] ✓ Maple : cpu = 0.191 (sec), leaf count = 100
\[\left \{y \left (x \right ) = \frac {-\left (c_{1}-2 \sqrt {-\frac {a^{2}}{x}}\right ) x \cos \left (2 \sqrt {-\frac {a^{2}}{x}}\right )-2 \left (c_{1} \sqrt {-\frac {a^{2}}{x}}+\frac {1}{2}\right ) x \sin \left (2 \sqrt {-\frac {a^{2}}{x}}\right )}{2 c_{1} \cos \left (2 \sqrt {-\frac {a^{2}}{x}}\right )+2 \sin \left (2 \sqrt {-\frac {a^{2}}{x}}\right )}\right \}\]