\[ 2 (x-1) x y'(x)+(x-1) y(x)^2-x=0 \] ✓ Mathematica : cpu = 0.170933 (sec), leaf count = 71
\[\left \{\left \{y(x)\to \frac {2 x \left (-G_{2,2}^{2,0}\left (x\left |\begin {array}{c} -\frac {1}{2},\frac {1}{2} \\ -1,0 \\\end {array}\right .\right )+\frac {c_1 (E(x)-K(x))}{\pi x}\right )}{G_{2,2}^{2,0}\left (x\left |\begin {array}{c} \frac {1}{2},\frac {3}{2} \\ 0,0 \\\end {array}\right .\right )+\frac {2 c_1 E(x)}{\pi }}\right \}\right \}\] ✓ Maple : cpu = 0.148 (sec), leaf count = 97
\[\left \{y \left (x \right ) = \frac {\left (c_{1} \LegendreQ \left (-\frac {1}{2}, 1, \frac {-x +2}{x}\right )-c_{1} \LegendreQ \left (\frac {1}{2}, 1, \frac {-x +2}{x}\right )+\LegendreP \left (-\frac {1}{2}, 1, \frac {-x +2}{x}\right )-\LegendreP \left (\frac {1}{2}, 1, \frac {-x +2}{x}\right )\right ) x}{2 \left (c_{1} \LegendreQ \left (-\frac {1}{2}, 1, \frac {-x +2}{x}\right )+\LegendreP \left (-\frac {1}{2}, 1, \frac {-x +2}{x}\right )\right ) \left (x -1\right )}\right \}\]