\[ b x^{5-2 a} e^{y(x)}+a y'(x)+x y''(x)=0 \] ✗ Mathematica : cpu = 0.353484 (sec), leaf count = 0 , could not solve
DSolve[b*E^y[x]*x^(5 - 2*a) + a*Derivative[1][y][x] + x*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 1.448 (sec), leaf count = 121
\[\left \{y \left (x \right ) = \mathit {ODESolStruc} \left (2 c_{1} a -6 c_{1}+\textit {\_a} +\left (2 a -6\right ) \left (\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} \right ), \left [\left \{\frac {d}{d \textit {\_a}}\mathrm {\_}\mathrm {b}\left (\textit {\_a} \right )=\left (2 a^{2}+b \,{\mathrm e}^{\textit {\_a}}-8 a +6\right ) \textit {\_}b\left (\textit {\_a} \right )^{3}+\left (a -1\right ) \textit {\_}b\left (\textit {\_a} \right )^{2}\right \}, \left \{\textit {\_a} =\left (-2 a +6\right ) \ln \left (x \right )+y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {1}{x \left (\frac {d}{d x}y \left (x \right )\right )-2 a +6}\right \}, \left \{x ={\mathrm e}^{c_{1}+\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a}}, y \left (x \right )=2 c_{1} a -6 c_{1}+\textit {\_a} +\left (2 a -6\right ) \left (\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} \right )\right \}\right ]\right )\right \}\]