\[ -x^2 y'(x)^2+x y''(x)+2 y'(x)+y(x)^2=0 \] ✓ Mathematica : cpu = 0.501198 (sec), leaf count = 160
\[\text {Solve}\left [\int _1^{y(x)}-\frac {x}{e^{x K[1]} c_1+2 x K[1]+1}dK[1]-\int _1^x\left (\int _1^{y(x)}\left (\frac {\left (e^{K[1] K[2]} c_1 K[1]+2 K[1]\right ) K[2]}{\left (e^{K[1] K[2]} c_1+2 K[1] K[2]+1\right ){}^2}-\frac {1}{e^{K[1] K[2]} c_1+2 K[1] K[2]+1}\right )dK[1]-\frac {e^{K[2] y(x)} c_1+K[2] y(x)+1}{K[2] \left (e^{K[2] y(x)} c_1+2 K[2] y(x)+1\right )}\right )dK[2]=c_2,y(x)\right ]\] ✓ Maple : cpu = 1.308 (sec), leaf count = 32
\[\left \{y \left (x \right ) = \frac {\RootOf \left (c_{2}+\int _{}^{\textit {\_Z}}-\frac {1}{c_{1} {\mathrm e}^{\textit {\_f}}-2 \textit {\_f} -1}d \textit {\_f} -\ln \left (x \right )\right )}{x}\right \}\]