\[ x^4 \left (-y'(x)^2\right )+4 x^2 y''(x)+4 y(x)=0 \] ✗ Mathematica : cpu = 7.74229 (sec), leaf count = 0 , could not solve
DSolve[4*y[x] - x^4*Derivative[1][y][x]^2 + 4*x^2*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 1.809 (sec), leaf count = 103
\[\left \{y \left (x \right ) = \mathit {ODESolStruc} \left (\textit {\_a} \,{\mathrm e}^{-2 c_{1}+\int -2 \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a}}, \left [\left \{\frac {d}{d \textit {\_a}}\mathrm {\_}\mathrm {b}\left (\textit {\_a} \right )=\left (-\textit {\_a}^{2}+7 \textit {\_a} \right ) \textit {\_}b\left (\textit {\_a} \right )^{3}+\left (\textit {\_a} -5\right ) \textit {\_}b\left (\textit {\_a} \right )^{2}-\frac {\textit {\_}b\left (\textit {\_a} \right )}{4}\right \}, \left \{\textit {\_a} =x^{2} y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {1}{\left (x \left (\frac {d}{d x}y \left (x \right )\right )+2 y \left (x \right )\right ) x^{2}}\right \}, \left \{x ={\mathrm e}^{c_{1}+\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a}}, y \left (x \right )=\textit {\_a} \,{\mathrm e}^{-2 c_{1}+\int -2 \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a}}\right \}\right ]\right )\right \}\]