\[ x^4 y''(x)-x \left (x^2+2 y(x)\right ) y'(x)+4 y(x)^2=0 \] ✓ Mathematica : cpu = 0.0793184 (sec), leaf count = 262
\[\left \{\left \{y(x)\to -\frac {x^3 \left (i \left (\frac {i}{\sqrt {c_1}}-\frac {\sqrt {-1-c_1}}{\sqrt {c_1}}\right ) \sqrt {c_1} c_2 x^{-1+i \left (\frac {i}{\sqrt {c_1}}-\frac {\sqrt {-1-c_1}}{\sqrt {c_1}}\right ) \sqrt {c_1}}+i \left (\frac {\sqrt {-1-c_1}}{\sqrt {c_1}}+\frac {i}{\sqrt {c_1}}\right ) \sqrt {c_1} x^{-1+i \left (\frac {\sqrt {-1-c_1}}{\sqrt {c_1}}+\frac {i}{\sqrt {c_1}}\right ) \sqrt {c_1}}\right )}{c_2 x^{i \left (\frac {i}{\sqrt {c_1}}-\frac {\sqrt {-1-c_1}}{\sqrt {c_1}}\right ) \sqrt {c_1}}+x^{i \left (\frac {\sqrt {-1-c_1}}{\sqrt {c_1}}+\frac {i}{\sqrt {c_1}}\right ) \sqrt {c_1}}}\right \}\right \}\] ✓ Maple : cpu = 1.247 (sec), leaf count = 21
\[\{y \left (x \right ) = \left (c_{1} \tanh \left (c_{1} \left (c_{2}-\ln \left (x \right )\right )\right )+1\right ) x^{2}\}\]