\[ -y(x) (y(x)+1) \left (b^2 y(x)^2-a^2\right )+(a y(x)-1) y'(x)+y(x) y''(x)-y'(x)^2=0 \] ✗ Mathematica : cpu = 62.9165 (sec), leaf count = 0 , could not solve
DSolve[-(y[x]*(1 + y[x])*(-a^2 + b^2*y[x]^2)) + (-1 + a*y[x])*Derivative[1][y][x] - Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 4.236 (sec), leaf count = 91
\[\left \{y \left (x \right ) = \mathit {ODESolStruc} \left (\textit {\_a} , \left [\left \{\textit {\_}b\left (\textit {\_a} \right ) \left (\frac {d}{d \textit {\_a}}\mathrm {\_}\mathrm {b}\left (\textit {\_a} \right )\right )-\frac {\textit {\_a}^{4} b^{2}+\textit {\_a}^{3} b^{2}-\textit {\_a}^{2} a^{2}-\textit {\_a} \,a^{2}-\textit {\_a} a \textit {\_}b\left (\textit {\_a} \right )+\textit {\_}b\left (\textit {\_a} \right )^{2}+\textit {\_}b\left (\textit {\_a} \right )}{\textit {\_a}}=0\right \}, \left \{\textit {\_a} =y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {d}{d x}y \left (x \right )\right \}, \left \{x =c_{1}+\int \frac {1}{\textit {\_}b\left (\textit {\_a} \right )}d \textit {\_a} , y \left (x \right )=\textit {\_a} \right \}\right ]\right )\right \}\]