\[ -a x^2-b x-c+3 y(x) y''(x)-2 y'(x)^2=0 \] ✓ Mathematica : cpu = 0.139219 (sec), leaf count = 118
\[\text {Solve}\left [\int \frac {y(x)^{2/3}}{\left (a x^2+b x+c\right ) \sqrt {-\frac {2 \left (a x^2+b x+c\right )^3}{y(x)^2}+\frac {c_1 \left (a x^2+b x+c\right )}{y(x)^{2/3}}+9 \left (b^2-4 a c\right )}}d\frac {a x^2+b x+c}{y(x)^{2/3}}=-\int \frac {1}{3 \left (a x^2+b x+c\right )}dx+c_2,y(x)\right ]\] ✓ Maple : cpu = 1.656 (sec), leaf count = 207
\[\left \{y \left (x \right ) = \left (a \,x^{2}+b x +c \right )^{\frac {3}{2}} \RootOf \left (-2 b \arctan \left (\frac {2 a x +b}{\sqrt {4 a c -b^{2}}}\right )+c_{2} \sqrt {4 a c -b^{2}}-2 \sqrt {4 a c -b^{2}}\, \left (\int _{}^{\textit {\_Z}}\frac {b}{\sqrt {4 c_{1} \textit {\_f}^{\frac {4}{3}} b^{2}-36 \textit {\_f}^{2} a c +9 \textit {\_f}^{2} b^{2}-2}}d \textit {\_f} \right )\right ), y \left (x \right ) = \left (a \,x^{2}+b x +c \right )^{\frac {3}{2}} \RootOf \left (-2 b \arctan \left (\frac {2 a x +b}{\sqrt {4 a c -b^{2}}}\right )+c_{2} \sqrt {4 a c -b^{2}}+2 \sqrt {4 a c -b^{2}}\, \left (\int _{}^{\textit {\_Z}}\frac {b}{\sqrt {4 c_{1} \textit {\_f}^{\frac {4}{3}} b^{2}-36 \textit {\_f}^{2} a c +9 \textit {\_f}^{2} b^{2}-2}}d \textit {\_f} \right )\right )\right \}\]