\[ a y(x) y''(x)+b y'(x)^2-\frac {y(x) y'(x)}{\sqrt {c^2+x^2}}=0 \] ✓ Mathematica : cpu = 0.717703 (sec), leaf count = 211
\[\left \{\left \{y(x)\to c_2 \exp \left (\int _1^x-\frac {\left (\frac {K[2]}{\sqrt {c^2+K[2]^2}}+1\right )^{\left .\frac {1}{2}\right /a}}{\left (1-\frac {K[2]}{\sqrt {c^2+K[2]^2}}\right )^{\left .\frac {1}{2}\right /a} \int _1^{K[2]}\frac {\exp \left (\frac {\frac {1}{2} \log \left (\frac {K[1]}{\sqrt {c^2+K[1]^2}}+1\right )-\frac {1}{2} \log \left (1-\frac {K[1]}{\sqrt {c^2+K[1]^2}}\right )}{a}\right ) \left (-\sqrt {c^2+K[1]^2} a-b \sqrt {c^2+K[1]^2}\right )}{a \sqrt {c^2+K[1]^2}}dK[1]-c_1 \left (1-\frac {K[2]}{\sqrt {c^2+K[2]^2}}\right )^{\left .\frac {1}{2}\right /a}}dK[2]\right )\right \}\right \}\] ✓ Maple : cpu = 2.506 (sec), leaf count = 75
\[\left \{y \left (x \right ) = \left (\frac {a}{\left (a +b \right ) \left (\frac {c_{1} a 2^{\frac {1}{a}} x^{\frac {1}{a}+1} \hypergeom \left (\left [-\frac {1}{2 a}, -\frac {1}{2 a}-\frac {1}{2}\right ], \left [-\frac {1}{a}+1\right ], -\frac {c^{2}}{x^{2}}\right )}{a +1}+c_{2}\right )}\right )^{-\frac {a}{a +b}}\right \}\]