\[ a x^2 y(x) y''(x)+b x^2 y'(x)^2+c x y(x) y'(x)+d y(x)^2=0 \] ✓ Mathematica : cpu = 1.35511 (sec), leaf count = 92
\[\left \{\left \{y(x)\to c_2 \exp \left (-\frac {\log (x) \left (a \left (\sqrt {\frac {a^2-2 a (c+2 d)-4 b d+c^2}{a^2}}-1\right )+c\right )-2 a \log \left (x^{\sqrt {\frac {a^2-2 a (c+2 d)-4 b d+c^2}{a^2}}}+c_1\right )}{2 (a+b)}\right )\right \}\right \}\] ✓ Maple : cpu = 1.5 (sec), leaf count = 136
\[\left \{y \left (x \right ) = x^{\frac {a}{2 a +2 b}} x^{-\frac {c}{2 a +2 b}} x^{-\frac {\sqrt {\left (-4 a -4 b \right ) d +\left (a -c \right )^{2}}}{2 a +2 b}} \left (\frac {a^{2}-4 b d +c^{2}+\left (-2 c -4 d \right ) a}{\left (c_{1} x^{\frac {\sqrt {\left (-4 a -4 b \right ) d +\left (a -c \right )^{2}}}{a}}-c_{2}\right )^{2} \left (a +b \right )^{2}}\right )^{-\frac {a}{2 a +2 b}}\right \}\]