\[ \left (x^2+y(x)^2\right ) y''(x)-2 \left (x y'(x)-y(x)\right ) \left (y'(x)^2+1\right )=0 \] ✓ Mathematica : cpu = 0.443759 (sec), leaf count = 95
\[\left \{\left \{y(x)\to \frac {1}{2} \left (-\sqrt {4 x \left (-x+e^{c_2}\right )+e^{2 c_2} \cot ^2(c_1)}-e^{c_2} \cot (c_1)\right )\right \},\left \{y(x)\to \frac {1}{2} \left (\sqrt {4 x \left (-x+e^{c_2}\right )+e^{2 c_2} \cot ^2(c_1)}-e^{c_2} \cot (c_1)\right )\right \}\right \}\] ✓ Maple : cpu = 1.649 (sec), leaf count = 83
\[\left \{y \left (x \right ) = \frac {c_{1}+1-\sqrt {-4 c_{2}^{2} x^{2}+c_{1}^{2}-4 i c_{2} x +c_{1} \left (4 i c_{2} x +2\right )+1}}{2 c_{2}}, y \left (x \right ) = \frac {c_{1}+1+\sqrt {-4 c_{2}^{2} x^{2}+c_{1}^{2}-4 i c_{2} x +c_{1} \left (4 i c_{2} x +2\right )+1}}{2 c_{2}}\right \}\]