\[ -h(y(x))+3 (1-y(x)) y(x) y''(x)-2 (1-2 y(x)) y'(x)^2=0 \] ✓ Mathematica : cpu = 0.708304 (sec), leaf count = 186
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {1}{(1-K[2])^{2/3} K[2]^{2/3} \sqrt {c_1+2 \int _1^{K[2]}-\frac {\exp \left (-2 \left (\frac {2}{3} \log (1-K[1])+\frac {2}{3} \log (K[1])\right )\right ) h(K[1])}{3 (K[1]-1) K[1]}dK[1]}}dK[2]\& \right ][x+c_2]\right \},\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{(1-K[3])^{2/3} K[3]^{2/3} \sqrt {c_1+2 \int _1^{K[3]}-\frac {\exp \left (-2 \left (\frac {2}{3} \log (1-K[1])+\frac {2}{3} \log (K[1])\right )\right ) h(K[1])}{3 (K[1]-1) K[1]}dK[1]}}dK[3]\& \right ][x+c_2]\right \}\right \}\] ✓ Maple : cpu = 0.333 (sec), leaf count = 119
\[\left \{-c_{2}-x +\int _{}^{y \left (x \right )}-\frac {\sqrt {9}}{3 \sqrt {\left (\textit {\_b} -1\right ) \left (c_{1}-\frac {2 \left (\int \frac {h \left (\textit {\_b} \right )}{\left (\textit {\_b}^{2}-\textit {\_b} \right )^{\frac {4}{3}} \left (\textit {\_b} -1\right ) \textit {\_b}}d \textit {\_b} \right )}{3}\right ) \left (\left (\textit {\_b} -1\right ) \textit {\_b} \right )^{\frac {1}{3}} \textit {\_b}}}d \textit {\_b} = 0, -c_{2}-x +\int _{}^{y \left (x \right )}\frac {\sqrt {9}}{3 \sqrt {\left (\textit {\_b} -1\right ) \left (c_{1}-\frac {2 \left (\int \frac {h \left (\textit {\_b} \right )}{\left (\textit {\_b}^{2}-\textit {\_b} \right )^{\frac {4}{3}} \left (\textit {\_b} -1\right ) \textit {\_b}}d \textit {\_b} \right )}{3}\right ) \left (\left (\textit {\_b} -1\right ) \textit {\_b} \right )^{\frac {1}{3}} \textit {\_b}}}d \textit {\_b} = 0\right \}\]