\[ y''(x) \left (a x^2+2 b x+c+y(x)^2\right )^2+d y(x)=0 \] ✓ Mathematica : cpu = 26.4941 (sec), leaf count = 260
\[\left \{\text {Solve}\left [a \tan ^{-1}\left (\frac {a x+b}{\sqrt {a c-b^2}}\right )+\sqrt {a c-b^2} \int _1^{\frac {y(x)}{\sqrt {c+x (2 b+a x)}}}\frac {a \left (K[2]^2+1\right )}{\sqrt {\left (K[2]^2+1\right ) \left (d+\left (K[2]^2+1\right ) \left (c_1 a^2+\left (b^2-a c\right ) K[2]^2\right )\right )}}dK[2]=c_2 \sqrt {a c-b^2},y(x)\right ],\text {Solve}\left [a \tan ^{-1}\left (\frac {a x+b}{\sqrt {a c-b^2}}\right )-\sqrt {a c-b^2} \int _1^{\frac {y(x)}{\sqrt {c+x (2 b+a x)}}}\frac {a \left (K[3]^2+1\right )}{\sqrt {\left (K[3]^2+1\right ) \left (d+\left (K[3]^2+1\right ) \left (c_1 a^2+\left (b^2-a c\right ) K[3]^2\right )\right )}}dK[3]=c_2 \sqrt {a c-b^2},y(x)\right ]\right \}\] ✓ Maple : cpu = 0.65 (sec), leaf count = 336
\[\left \{y \left (x \right ) = \sqrt {a \,x^{2}+2 b x +c}\, \RootOf \left (-a \arctan \left (\frac {a x +b}{\sqrt {a c -b^{2}}}\right )+c_{2} \sqrt {a c -b^{2}}-\sqrt {a c -b^{2}}\, \left (\int _{}^{\textit {\_Z}}\frac {\sqrt {\left (\textit {\_f}^{2}+1\right ) \left (-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_{1} \textit {\_f}^{2} a^{2}-\textit {\_f}^{2} a c +\textit {\_f}^{2} b^{2}+c_{1} a^{2}+d \right )}\, a}{-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_{1} \textit {\_f}^{2} a^{2}-\textit {\_f}^{2} a c +\textit {\_f}^{2} b^{2}+c_{1} a^{2}+d}d \textit {\_f} \right )\right ), y \left (x \right ) = \sqrt {a \,x^{2}+2 b x +c}\, \RootOf \left (-a \arctan \left (\frac {a x +b}{\sqrt {a c -b^{2}}}\right )+c_{2} \sqrt {a c -b^{2}}+\sqrt {a c -b^{2}}\, \left (\int _{}^{\textit {\_Z}}\frac {\sqrt {\left (\textit {\_f}^{2}+1\right ) \left (-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_{1} \textit {\_f}^{2} a^{2}-\textit {\_f}^{2} a c +\textit {\_f}^{2} b^{2}+c_{1} a^{2}+d \right )}\, a}{-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_{1} \textit {\_f}^{2} a^{2}-\textit {\_f}^{2} a c +\textit {\_f}^{2} b^{2}+c_{1} a^{2}+d}d \textit {\_f} \right )\right )\right \}\]