\[ a+x^4 \left (y'(x)+y(x)^2\right )=0 \] ✓ Mathematica : cpu = 0.103347 (sec), leaf count = 347
\[\left \{\left \{y(x)\to -\frac {\frac {i \sqrt {\frac {2}{\pi }} c_1 \sinh \left (\frac {\sqrt {-a}}{x}\right )}{\sqrt {-\frac {i \sqrt {-a}}{x}}}+\frac {i \sqrt {-a} \left (-\frac {2 \sqrt {\frac {2}{\pi }} \left (i \sinh \left (\frac {\sqrt {-a}}{x}\right )+\frac {i \sqrt {-a} x \cosh \left (\frac {\sqrt {-a}}{x}\right )}{a}\right )}{\sqrt {-\frac {i \sqrt {-a}}{x}}}-\frac {\sqrt {\frac {2}{\pi }} c_1 \cosh \left (\frac {\sqrt {-a}}{x}\right )}{\sqrt {-\frac {i \sqrt {-a}}{x}}}+\frac {\sqrt {\frac {2}{\pi }} c_1 \left (-\frac {\sqrt {-a} x \sinh \left (\frac {\sqrt {-a}}{x}\right )}{a}-\cosh \left (\frac {\sqrt {-a}}{x}\right )\right )}{\sqrt {-\frac {i \sqrt {-a}}{x}}}\right )}{x}}{2 x \left (\frac {\sqrt {\frac {2}{\pi }} \cosh \left (\frac {\sqrt {-a}}{x}\right )}{\sqrt {-\frac {i \sqrt {-a}}{x}}}-\frac {i \sqrt {\frac {2}{\pi }} c_1 \sinh \left (\frac {\sqrt {-a}}{x}\right )}{\sqrt {-\frac {i \sqrt {-a}}{x}}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.075 (sec), leaf count = 28
\[\left \{y \left (x \right ) = \frac {-\sqrt {a}\, \tan \left (\frac {\left (c_{1} x -1\right ) \sqrt {a}}{x}\right )+x}{x^{2}}\right \}\]