\[ (2-9 x) x^2 y''(x)^2+6 y(x) y''(x)-36 x y'(x)^2-6 (1-6 x) x y'(x) y''(x)=0 \] ✓ Mathematica : cpu = 0.0276236 (sec), leaf count = 24
\[\left \{\left \{y(x)\to \frac {c_1{}^2 x^3}{c_2}+c_1 x+c_2\right \}\right \}\] ✓ Maple : cpu = 0.987 (sec), leaf count = 308
\[\left \{y \left (x \right ) = 0, y \left (x \right ) = \frac {c_{1} \sqrt {5}\, \sqrt {4}\, \sqrt {4 x -1}\, x \left (\left (9 x -1\right ) \sqrt {9}+9 \sqrt {9 x^{2}-2 x}\right )^{\frac {2 \sqrt {9}}{9}} \left (\left (9 x -1\right ) \sqrt {9}+9 \sqrt {9 x^{2}-2 x}\right )^{\frac {5 \sqrt {9}}{18}} {\mathrm e}^{\frac {\sqrt {9 x^{2}-2 x}\, \left (\sqrt {16}-4\right )}{2}}}{135 \sqrt {\frac {\frac {4}{5}+\frac {\sqrt {16}\, \left (x -\frac {1}{5}\right )}{\sqrt {9 x^{2}-2 x}}}{\sqrt {-\frac {\left (4 x -1\right )^{2}}{9 x^{2}-2 x}}}}}, y \left (x \right ) = \frac {27 c_{1} \sqrt {5}\, \sqrt {4}\, \sqrt {\frac {\frac {4}{5}+\frac {\sqrt {16}\, \left (x -\frac {1}{5}\right )}{\sqrt {9 x^{2}-2 x}}}{\sqrt {-\frac {\left (4 x -1\right )^{2}}{9 x^{2}-2 x}}}}\, \sqrt {4 x -1}\, x \left (\left (9 x -1\right ) \sqrt {9}+9 \sqrt {9 x^{2}-2 x}\right )^{-\frac {5 \sqrt {9}}{18}} \left (\left (9 x -1\right ) \sqrt {9}+9 \sqrt {9 x^{2}-2 x}\right )^{-\frac {2 \sqrt {9}}{9}} {\mathrm e}^{-\frac {\sqrt {9 x^{2}-2 x}\, \left (\sqrt {16}-4\right )}{2}}}{4}, y \left (x \right ) = c_{1} x^{3}+c_{2} x +\frac {c_{2}^{2}}{c_{1}}\right \}\]