\[ x^2 y^{(3)}(x)+x (y(x)-1) y''(x)+x y'(x)^2+(1-y(x)) y'(x)=0 \] ✓ Mathematica : cpu = 0.208281 (sec), leaf count = 286
\[\left \{\left \{y(x)\to \frac {2 x \left (c_3 \left (J_{\frac {\sqrt {c_2+2}}{\sqrt {2}}}\left (-\frac {1}{2} i x \sqrt {c_1}\right )-\frac {1}{4} i \sqrt {c_1} x \left (J_{\frac {\sqrt {c_2+2}}{\sqrt {2}}-1}\left (-\frac {1}{2} i x \sqrt {c_1}\right )-J_{\frac {\sqrt {c_2+2}}{\sqrt {2}}+1}\left (-\frac {1}{2} i x \sqrt {c_1}\right )\right )\right )+Y_{\frac {\sqrt {c_2+2}}{\sqrt {2}}}\left (-\frac {1}{2} i x \sqrt {c_1}\right )-\frac {1}{4} i \sqrt {c_1} x \left (Y_{\frac {\sqrt {c_2+2}}{\sqrt {2}}-1}\left (-\frac {1}{2} i x \sqrt {c_1}\right )-Y_{\frac {\sqrt {c_2+2}}{\sqrt {2}}+1}\left (-\frac {1}{2} i x \sqrt {c_1}\right )\right )\right )}{c_3 x J_{\frac {\sqrt {c_2+2}}{\sqrt {2}}}\left (-\frac {1}{2} i x \sqrt {c_1}\right )+x Y_{\frac {\sqrt {c_2+2}}{\sqrt {2}}}\left (-\frac {1}{2} i x \sqrt {c_1}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.821 (sec), leaf count = 190
\[\left \{-c_{3}+2 \left (\int _{}^{y \left (x \right )}\frac {1}{\textit {\_h}^{2}+2 \RootOf \left (2 c_{2} \sqrt {2}\, \textit {\_Z} \BesselY \left (\frac {\sqrt {c_{1}+4}}{2}+1, \frac {\sqrt {2}\, \textit {\_Z}}{2}\right )+2 c_{2} \textit {\_h} \BesselY \left (\frac {\sqrt {c_{1}+4}}{2}, \frac {\sqrt {2}\, \textit {\_Z}}{2}\right )-2 c_{2} \sqrt {c_{1}+4}\, \BesselY \left (\frac {\sqrt {c_{1}+4}}{2}, \frac {\sqrt {2}\, \textit {\_Z}}{2}\right )-4 c_{2} \BesselY \left (\frac {\sqrt {c_{1}+4}}{2}, \frac {\sqrt {2}\, \textit {\_Z}}{2}\right )+2 \sqrt {2}\, \textit {\_Z} \BesselJ \left (\frac {\sqrt {c_{1}+4}}{2}+1, \frac {\sqrt {2}\, \textit {\_Z}}{2}\right )+2 \textit {\_h} \BesselJ \left (\frac {\sqrt {c_{1}+4}}{2}, \frac {\sqrt {2}\, \textit {\_Z}}{2}\right )-2 \sqrt {c_{1}+4}\, \BesselJ \left (\frac {\sqrt {c_{1}+4}}{2}, \frac {\sqrt {2}\, \textit {\_Z}}{2}\right )-4 \BesselJ \left (\frac {\sqrt {c_{1}+4}}{2}, \frac {\sqrt {2}\, \textit {\_Z}}{2}\right )\right )^{2}-c_{1}-4 \textit {\_h}}d \textit {\_h} \right )+\ln \left (x \right ) = 0\right \}\]