\[ \left \{x'(t)-x(t)+2 y(t)=0,x''(t)-2 y'(t)=2 t-\cos (2 t)\right \} \] ✓ Mathematica : cpu = 0.446788 (sec), leaf count = 224
\[\left \{\left \{x(t)\to 7 \left (t^2-\frac {1}{2} \sin (2 t)+c_2\right )+8 \left (\frac {1}{136} e^{-t/2} \left (2 e^{t/2} \cos (2 t)-4 \left (34 e^{t/2} t^2+17 e^{t/2} (t+2)-15 e^{t/2} \sin (2 t)\right )\right )+c_1 e^{t/2}+c_2 \left (e^{t/2}-1\right )\right ),y(t)\to \frac {3}{2} \left (t^2-\frac {1}{2} \sin (2 t)+c_2\right )+2 \left (\frac {1}{136} e^{-t/2} \left (2 e^{t/2} \cos (2 t)-4 \left (34 e^{t/2} t^2+17 e^{t/2} (t+2)-15 e^{t/2} \sin (2 t)\right )\right )+c_1 e^{t/2}+c_2 \left (e^{t/2}-1\right )\right )\right \}\right \}\] ✓ Maple : cpu = 0.185 (sec), leaf count = 69
\[\left \{\left \{x \left (t \right ) = 2 c_{1} {\mathrm e}^{\frac {t}{2}}-t^{2}+c_{2}-4 t +\frac {2 \cos \left (2 t \right )}{17}+\frac {\sin \left (2 t \right )}{34}, y \left (t \right ) = \frac {c_{1} {\mathrm e}^{\frac {t}{2}}}{2}-\frac {t^{2}}{2}+\frac {c_{2}}{2}-t +\frac {\cos \left (2 t \right )}{34}+\frac {9 \sin \left (2 t \right )}{68}+2\right \}\right \}\]