\[ -a y(x)^n-b x^{(m+1) n}+x^{m (n-1)+n} y'(x)=0 \] ✓ Mathematica : cpu = 0.488293 (sec), leaf count = 91
\[\text {Solve}\left [\int _1^{\left (\frac {a x^{-((m+1) n)}}{b}\right )^{\frac {1}{n}} y(x)}\frac {1}{K[1]^n-\left (\frac {b^{1-n} (m+1)^n}{a}\right )^{\frac {1}{n}} K[1]+1}dK[1]=b x^{m+1} \log (x) \left (\frac {a x^{-((m+1) n)}}{b}\right )^{\frac {1}{n}}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.339 (sec), leaf count = 60
\[\left \{-c_{1}+\int _{\textit {\_b}}^{y \left (x \right )}-\frac {x^{n} x^{m n}}{a x \,\textit {\_a}^{n} x^{m}+\left (b x \,x^{m}-\left (m +1\right ) \textit {\_a} \right ) x^{n} x^{m n}}d \textit {\_a} +\ln \left (x \right ) = 0\right \}\]