\[ \left \{a t x'(t)=b c (y(t)-z(t)),b t y'(t)=a c (z(t)-x(t)),c t z'(t)=a b (x(t)-y(t))\right \} \] ✓ Mathematica : cpu = 0.0306786 (sec), leaf count = 1148
\[\left \{\left \{x(t)\to \frac {\left (2 a^2 t^{i \sqrt {a^2+b^2+c^2}}+b^2 \left (t^{2 i \sqrt {a^2+b^2+c^2}}+1\right )+c^2 \left (t^{2 i \sqrt {a^2+b^2+c^2}}+1\right )\right ) c_1 t^{-i \sqrt {a^2+b^2+c^2}}}{2 \left (a^2+b^2+c^2\right )}-\frac {b \left (t^{i \sqrt {a^2+b^2+c^2}}-1\right ) \left (a b \left (t^{i \sqrt {a^2+b^2+c^2}}-1\right )+i c \sqrt {a^2+b^2+c^2} \left (t^{i \sqrt {a^2+b^2+c^2}}+1\right )\right ) c_2 t^{-i \sqrt {a^2+b^2+c^2}}}{2 a \left (a^2+b^2+c^2\right )}-\frac {c \left (t^{i \sqrt {a^2+b^2+c^2}}-1\right ) \left (a c \left (t^{i \sqrt {a^2+b^2+c^2}}-1\right )-i b \sqrt {a^2+b^2+c^2} \left (t^{i \sqrt {a^2+b^2+c^2}}+1\right )\right ) c_3 t^{-i \sqrt {a^2+b^2+c^2}}}{2 a \left (a^2+b^2+c^2\right )},y(t)\to -\frac {a \left (t^{i \sqrt {a^2+b^2+c^2}}-1\right ) \left (a b \left (t^{i \sqrt {a^2+b^2+c^2}}-1\right )-i c \sqrt {a^2+b^2+c^2} \left (t^{i \sqrt {a^2+b^2+c^2}}+1\right )\right ) c_1 t^{-i \sqrt {a^2+b^2+c^2}}}{2 b \left (a^2+b^2+c^2\right )}+\frac {\left (2 b^2 t^{i \sqrt {a^2+b^2+c^2}}+a^2 \left (t^{2 i \sqrt {a^2+b^2+c^2}}+1\right )+c^2 \left (t^{2 i \sqrt {a^2+b^2+c^2}}+1\right )\right ) c_2 t^{-i \sqrt {a^2+b^2+c^2}}}{2 \left (a^2+b^2+c^2\right )}-\frac {c \left (t^{i \sqrt {a^2+b^2+c^2}}-1\right ) \left (b c \left (t^{i \sqrt {a^2+b^2+c^2}}-1\right )+i a \sqrt {a^2+b^2+c^2} \left (t^{i \sqrt {a^2+b^2+c^2}}+1\right )\right ) c_3 t^{-i \sqrt {a^2+b^2+c^2}}}{2 b \left (a^2+b^2+c^2\right )},z(t)\to -\frac {a \left (t^{i \sqrt {a^2+b^2+c^2}}-1\right ) \left (a c \left (t^{i \sqrt {a^2+b^2+c^2}}-1\right )+i b \sqrt {a^2+b^2+c^2} \left (t^{i \sqrt {a^2+b^2+c^2}}+1\right )\right ) c_1 t^{-i \sqrt {a^2+b^2+c^2}}}{2 c \left (a^2+b^2+c^2\right )}-\frac {b \left (t^{i \sqrt {a^2+b^2+c^2}}-1\right ) \left (b c \left (t^{i \sqrt {a^2+b^2+c^2}}-1\right )-i a \sqrt {a^2+b^2+c^2} \left (t^{i \sqrt {a^2+b^2+c^2}}+1\right )\right ) c_2 t^{-i \sqrt {a^2+b^2+c^2}}}{2 c \left (a^2+b^2+c^2\right )}+\frac {\left (2 c^2 t^{i \sqrt {a^2+b^2+c^2}}+a^2 \left (t^{2 i \sqrt {a^2+b^2+c^2}}+1\right )+b^2 \left (t^{2 i \sqrt {a^2+b^2+c^2}}+1\right )\right ) c_3 t^{-i \sqrt {a^2+b^2+c^2}}}{2 \left (a^2+b^2+c^2\right )}\right \}\right \}\] ✓ Maple : cpu = 0.162 (sec), leaf count = 309
\[\left \{\left \{x \left (t \right ) = c_{2} \sin \left (\sqrt {a^{2}+b^{2}+c^{2}}\, \ln \left (t \right )\right )+c_{3} \cos \left (\sqrt {a^{2}+b^{2}+c^{2}}\, \ln \left (t \right )\right )+c_{1}, y \left (t \right ) = \frac {c_{1} b^{3}-\sqrt {a^{2}+b^{2}+c^{2}}\, \left (-c_{2} \cos \left (\sqrt {a^{2}+b^{2}+c^{2}}\, \ln \left (t \right )\right )+c_{3} \sin \left (\sqrt {a^{2}+b^{2}+c^{2}}\, \ln \left (t \right )\right )\right ) a c +\left (c_{1} c^{2}+\left (-c_{2} \sin \left (\sqrt {a^{2}+b^{2}+c^{2}}\, \ln \left (t \right )\right )-c_{3} \cos \left (\sqrt {a^{2}+b^{2}+c^{2}}\, \ln \left (t \right )\right )\right ) a^{2}\right ) b}{\left (b^{2}+c^{2}\right ) b}, z \left (t \right ) = \frac {-c_{2} a^{2} c \sin \left (\sqrt {a^{2}+b^{2}+c^{2}}\, \ln \left (t \right )\right )-c_{3} a^{2} c \cos \left (\sqrt {a^{2}+b^{2}+c^{2}}\, \ln \left (t \right )\right )+c_{1} b^{2} c +c_{1} c^{3}-c_{2} \sqrt {a^{2}+b^{2}+c^{2}}\, a b \cos \left (\sqrt {a^{2}+b^{2}+c^{2}}\, \ln \left (t \right )\right )+c_{3} \sqrt {a^{2}+b^{2}+c^{2}}\, a b \sin \left (\sqrt {a^{2}+b^{2}+c^{2}}\, \ln \left (t \right )\right )}{\left (b^{2}+c^{2}\right ) c}\right \}\right \}\]